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Now 

sin fo(O) = ~ H(O,M) 
M 

= ~ '  H(O,M) + G(O) 
M 

< Q + G(0). (B. 10) 

Hence a sufficient condition to satisfy equation (B.8) is 

i.e. 

Q < ~t[1 - 4G(O)Q] 1/2 (B. 11) 

Q < c~[4~2G2(0) + 1] 1/2- 2~2G(0). (B.12) 
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Rules are given for the construction of facetted polyhedra which ensure that the reciprocal figures are 
also polyhedra. The complete set of 22 facetted dodecahedra is enumerated, depicted and correlated 
with the stellations of the icosahedron. 

Introduction and definitions 

The name polyhedron implies a definition in terms of 
the fiat polygonal faces of the figure. This viewpoint 
leads naturally to the idea of stellating a polyhedron by 
extending the planes of the faces to meet again at new 
edges and vertices. Less obvious is the dual process, 
facetting, in which the vertices are linked together to 
give new edges and new faces (or facets). Coxeter 
(1963) has given an authoritative account of both con- 
structions but treats only those cases where the derived 
polyhedra have regular polygonal faces or vertices. 
This is a severe restriction, satisfied by only five of the 
59 stellated icosahedra enumerated by Coxeter, Du 
Val, Flather & Petrie (1938). It does, however, have 
the effect of ensuring that the derived polyhedra have 
well-defined reciprocals, a condition not met by many 
of the 59 icosahedra. 

The operation of reciprocating a polyhedron (P) 
consists in constructing a set of points reciprocal to the 
planes of the faces of P; the centre of P is taken as the 
centre of inversion. The new points are identified with 
the vertices of the reciprocal (R); they are linked by 
edges whenever the corresponding faces of P have an 
edge in common. It follows that the vertices of P are 
reciprocal to the faces of R and that P and R are topo- 
logically dual. Clearly it is possible to define the face- 
tions of P and the ~tellations of R in such a way as to 

maintain duality. However, one cannot construct 59 
facetted dodecahedra by reciprocating the stellated ico- 
sahedra of Coxeter et al. (1938), since these were de- 
scribed as solids built up from fundamental cells 
defined by the extended faces of the icosahedron. The 
reciprocal cells overlap one another and so cannot be 
used in an analogous way. If, however, one treats a 
polyhedron as a surface, defining precisely how the 
faces are to be joined together, the construction of the 
reciprocal follows automatically. This procedure leads 
to a convenient description of facetting, through the 
definitions which follow: 

1. An edge is a straight line connecting two vertices. 
2. A polygon is an endless chain of coplanar edges 

in which every vertex lies at the end of two and only 
two edges. The edges may intersect to give star or 
skew polygons but the intersections are not counted as 
vertices. 

3. A face (or facet) is a plane surface with a poly- 
gonal boundary. If the chain of edges winds round the 
centre n times the face will have n layers, which may be 
connected by a winding point. 

4. A polyhedron is an unbounded surface composed 
of faces joined together along their edges in such a 
way that every edge of the polyhedron is the edge of 
two and only two faces. The faces may intersect but 
the intersections are not counted as edges. 

So far, this follows Coxeter (1963), but does not 
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specify regularity. In order that the reciprocal of a 
polyhedron should also satisfy rule 4 the dual require- 
ment is introduced: 

5. If several vertices lie along the same line, only 
one edge may be drawn along the line, connecting just 
two (any two) of the vertices. 
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Fig. 1. The edges radiating from one vertex of a dodecahedron. 
The vertices are ringed and the edges drawn to indicate their 
type: - -  a; ~ b; . . . . .  e; . . . . . .  d. 
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Fig. 2. The facets of the dodecahedron. 

6. A facetion is a polyhedron of which the vertices 
coincide with the vertices of a convex polyhedron, or 
parent. 

7. We admit only facetions having the same rota- 
tional symmetry as the parent. This implies that (a) the 
facetion must include all or none of any set of facets 
or edges related to one another by rotational symmetry 
operations of the parent and (b) a facet must include 
all or none of any set of edges in its plane related to 
one another by those rotational symmetry operations 
of the parent which transform the plane into itself. 

8. Edges or facets passing through the centre of 
symmetry are not admitted since the reciprocal edge or 
vertex lies at infinity. 

Applications 

The facetions of the dodecahedron 
There are only four distinct ways of linking two 

vertices of a regular dodecahedron to form an edge 
(Fig. 1). Table 1 gives the number of edges of each 
type (denoted a,b,c,d), their lengths and symmetry, 
i.e. the symmetry operations of the dodecahedron 
which transform the edge into itself. The e edges alone 
can be divided into two mirror-image subsets each 
having the rotational symmetry of the dodecahedron. 

Table 1. The edges of the dodecahedron 

Symbol Length Symmetry Total number 
a 1 2m 30 
b z m ' 60 
e 1/2 2 60 
d zz 2m 30 

Note: 7 is the positive root of x~-x - 1 =,0. 

The planes of the facets are enumerated by taking 
each type of edge in turn and listing all the planes pass- 
ing through an edge and another vertex. We define the 
index of the plane as the number of vertices it cuts off 
from the centre of the polyhedron and the order as the 
number of vertices included in the plane. The planes are 
denoted by a number pair (index, order); Table 2 lists 
the complete set. 

Table 2. The planes of the facets 
Edges Total number 

Index Order i nc luded  Symmetry of planes 
0 5 5a, 5b 5m 12 
1 3 3b 3m 20 
2 4 4b, 2e 2m 30 
3 3 a, 2e m 60 
4 3 b, 2e m 60 
4 6 3a, 3b, 6e, 3d 3m 20 
5 5 5b, 5d 5m 12 
7 3 2e, d m 60 

The possible facets are obtained for each type of 
face-plane, using definitions 2, 3 and 7(b). The results 
are displayed in Fig. 2; the notation indicates the index 
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and the chain of edges. In all cases but one the indivi- 
dual facets are symmetrical with respect to some mirror 
plane of the dodecahedron; the exception is the 
triangular facet {4,3c} which may be used alone or 
combined with its mirror image to give the star- 
hexagonal facet {4,6c}. In the (2,4) plane the b edges 
divide into two pairs, not related by any symmetry 
operation of the facet; either pair may be combined 
with the c edges to give two skew quadrilateral facets, 
{2,2(bc)} and {2,2(b'c)}. 

The facetions are constructed from sets of facets, 
following rules 4 and 7(a). Where a, c, or d edges are 
present each edge must be common to two facets, re- 
lated by a half-turn about the twofold axis of symmetry 
bisecting the edge, unless the facet is itself symmetrical 
about this axis. Thus each of the sets of facets con- 
taining a, c or d edges only constitutes a facetion. So 
also does the set {2,4b}, but in the remaining sets the 
b edges are unshared ({2,4b} is exceptional just be- 
cause each facet contains two sets of b edges). The sets 
with unshared b edges can be combined in pairs to 
give a further 14 facetions, not counting the combina- 
tion of {4,3(ab)} with {4,3(bd)} which is equivalent to 
{4,3(ad)}. There are no more, since the facets {2,2(bc)} 
and {2,2(b'c)} have both b and c edges unshared and 

(a) (b) 
t 

(c) (a) 

(e) (f) 

Fig. 3. Facetions of the dodecahedron. (a) [0, 5a], (b) [2, 4b], 
(c) [4, 3(ad)], (d) .[4, 3c], (e) [4, 6c], (f) [3, ace]. 

(h) (g) 

(i) 
, ~ _ - . . . .  _ _ _ . . , . .  . . . .  

k 

U) (k) 
Fig. 3 (cont.). (g) [5, 5dl, (h) [0, 5b; 1, 3b], (i) [7, ecd], 

(j) [0, 5b; 4, 3(bd)], (~:) [0, 5b; 4, 3(ab)]. 

can only be combined together, to give {2,4b}. (But if 
we set aside rule 8 and allow the rectangular facet with 
b and c edges which passes through the centre of sym- 
metry, this can be combined with either {2,2(bc)} or 
{2,2(b'c)} to give two more 'improper' facetions.) 

In all, there are 22 facetions; they are depicted in 
Fig. 3, though it must be remembered that only a part 
of each surface is in fact visible. The notation indicates 
the facets used. Five of the facetions are fully regular 
and are listed by Coxeter (1963): the dodecahedron 
itself [0,5a], the great stellated dodecahedron [5,5d], the 
'five cubes' [2,4b], the 'five tetrahedra' [4,3c], and the 
'ten tetrahedra' [4,6c]. The last three, as implied by 
their familiar names, are composed of several inter- 
penetrating but distinct polyhedra of lower symmetry. 
There is one other such facetion: [1,3b; 4,acc] is com- 
posed of ten triangular antiprisms. (The two improper 
facetions are also compounds, both comprising five 
improperly facetted cubes. These are one-sided, or 
non-orientable, surfaces, owing to the use of the dia- 
gonal facets.) 

The stellations o f  the icosahedron 
Each of the facetions of the dodecahedron has a 

characteristic vertex polygon, all of which may be 
derived from a single diagram (Fig. 4). This represents 
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the intersect ion of  the edges rad ia t ing  f rom a vertex 
with the (1,3) p lane  between it and  the centre. Fo r  each 
point  we can construct  a reciprocal  line ( inver t ing with 

Table  3. Facet ted  dodecahedra and stel lated icosahedra 

Solids* Surfacest Density Genus 
A [0, 5a] 1 0 
B [0, 5b; 1, 3b] 2 5 
C [2, 4b] 5 0 
D [3, ace] 5 6 
E [4, bee; 4, 3(ab)] 15 26 
G [5, 5d] 7 0 
H [7, cod] 25 6 
De1 [0, 5b; 4, 3(ab)] 7 0 
De1 [1, 3b; 4, 3(ab)] 5 16 
De2 [0, 5b; 4, bee] 8 15 
De 2 [1, 3b; 4, bee] 10 0 
D + f  2 [4, bcc; 5, 5b] 4 15 
De2f 2 [0, 5b; 5, 5b] 4 9 
De2f 2 [1, 3b; 5, 5b] 6 5 
Ef t [4, 6c] 10 0 
Ef  l [4, 3c] 5 0 
Ef 2 [4, 3(ab); 5, 5b] 11 20 
Eftg t [4, 3(ad)] 0 11 

(t) 

Efjg t [0, 5b; 4, 3(bd)] 7 20 .. . . . .  ~ 
Eflg t [1, 3b; 4, 3(bd)] 5 16 
Eflg t [4, bee; 4, 3(bd)] 15 26 
Fgl [4, 3(bd)" 5, 5b] 11 0 

* After Coxeter et al. (1938), who do not list D + f  2. 
t This work. 

Fig. 3 (cont.) (r) [0, 5b; 4, bcc], (s) [4, bcc; 5, 5b], 
(t) [0, 5b" 5, 5b], (u) [1, 3b" 4, 3(ab)], (v) [1, 3b; 4, 3(bd)]. 

respect to the centre of  the d iagram),  represent ing  an 
edge in a face-plane of  the icosahedron .  The  vertex 

(t)_ (m) po lygon  for any  facetted dodecahedron  is const ructed 

. /  

,, (o) 

(p) 

~ . _  _ 

= / 

(q) 
Fig. 3 (cont.) (l) [1, 3b; 5, 5b], (m) [1, 3b; 4, bcc], 

(n) [4, 3(bd); 5, 5b], (o) [4, bee; 4, 3(bd)], (p) [4, 3(ab); 5, 5b], 
(q) [4, bce; 4, 3(ab)]. 

by l inking  the points  to show the lines of  intersect ion of  
the facets with the p lane ;  the face of  the reciprocal  
stellated i cosahedron  is ob ta ined  by a co r respond ing  
traverse o f  edges. The  cons t ruc t ion  shows that  the 
facet ions  [4,3c], [4,6c] and  [4,3(ad)] are self-reciprocal  
and  thus also s tel lat ions o f  the icosahedron .  Tab le  3 
shows the re la t ion be tween our  surfaces and  the solid 
s tel la t ions o f  Coxeter  et al. (1938). These  au thors  did 
not  d is t inguish  between stel lat ions which  look al ike 
f rom the outside,  so that  four  o f  their  solids cor respond  
to two or more  surfaces.  

The  real difference between these ' look-a l ike '  stella- 
t ions is b rough t  out  by c o m p a r i n g  the densi ty and  the 
genus  of  the po lyhed ra  (see Table  3); these n u m b e r s  char-  
acterize the surface and  so are the same for each of  a pair  
o f  duals .  The  densi ty  is the n u m b e r  of  t imes the centre 
is 'wrapped  up '  by the surface and  can be calculated 
f rom the solid angles  sub tended  by ind iv idua l  facets at the 
centre  o f  the dodecahedron ,  r e m e m b e r i n g  that  some 
regions o f  the facets mus t  be given double  or negative 
weights.  One  in teres t ing result  is that  [4,3(ad)] has zero 
density,  i.e. that  the centre is not  enclosed.  This  is 
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because the centre point of each of the pentagonal 
'dimples' constitutes an infinitesimally narrow tunnel 
giving access to a central icosahedral cavity. 

The topological concept of genus is most simply 
appreciated as a generalization of Euler's rule (Ball, 
1959): if F, V and E are the numbers of faces, vertices 

o .°"" 

" /J, ! = = .  

Fig. 4. The vertex figure. The points of intersection of the 
dodecahedral edges with the plane are circled to indicate 
the type of edge, as in Fig. 1. Also shown are the correspond- 
ing reciprocal lines, which form the edges in the face-plane 
of the icosahedron. 

and edges of the polyhedron then its surface is of genus 
½ ( 2 + E - F - V ) .  If the genus is zero the surface is 
simply connected, i.e. deformable into a sphere. For 
compound facetions the formula must be applied to 
the component polyhedra individually. A face of which 
the edges form n distinct chains must be counted n 
times, as must a vertex with n distinct chains of edges 
in its vertex polygon. 

Thus it appears that 44 of the '59 icosahedra' 
(Coxeter et al., 1938) have no reciprocals. In all of 
these it is impossible to describe the face by a polygon 
which satisfies rule 5, so that any attempt at reciproca- 
tion gives a figure with more than two faces meeting 
along some edges. It is interesting that of the dual pair 
of rules 4 and 5, 5 is trivial for facetted dodecahedra 
while 4 is intuitively obvious but in stellating the ico- 
sahedron it is 4 which is trivial while 5 is not obvious 
at all. 
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The rotation function calculated with 10 A three-dimensional data from monoclinic crystals of the 
satellite tobacco necrosis virus was fitted numerically to an icosahedral axis set. The r.m.s, angular 
deviation of the observed peak maxima from the calculated model axis set was 0.67 ° and the largest 
deviation was 1.4 °. Thus, there is no significant deviation from icosahedral symmetry at 10 A resolu- 
tion. An investigation of the effects of the data inclusion limits and the radius of integration on the 
resolution of neighboring peaks in the rotation function showed that the best resolution was obtained 
by using only a thin shell of the highest-resolution data available and a radius of integration no larger 
than the estimated diameter of the virus protein subunit. 

Introduction 

The crystallization of a virus, the tobacco mosaic virus, 
was first reported by Stanley (1935). Soon thereafter 
a number of small spherical plant viruses were crys- 
tallized and in 1944 X-ray diffraction patterns were 
obtained from dried crystals of a very small virus-like 
particle then called 'derivative' or 'protein' of the to- 
bacco necrosis virus (TNV, Crowfoot & Schmidt, 
1945). The particle was about one-third the molecular 
weight of TNV with which it was associated during 

infection and was thought to be a byproduct of in- 
fection rather than a separate virus. It is now recognized 
as the satellite tobacco necrosis virus (STNV) which, 
although antigenically unrelated to TNV, requires si- 
multaneous co-infection by TNV in order to produce 
progeny (Kassanis & Nixon, 1961). 

Crick & Watson (1956) proposed that the structural 
protein coat of small spherical viruses was made up 
of a number of identical subunits packed with cubic 
point symmetry to form the virus surface. This theory 
was formalized and extended by Caspar & Klug (1962) 


